Sensitivity of human visual cortical areas to the stereoscopic depth of a moving stimulus.

نویسندگان

  • Andrew T Smith
  • Matthew B Wall
چکیده

Many fMRI studies have documented motion-sensitivity in the human occipital cortex and several have examined sensitivity to binocular disparity. However, selectivity to the stereo-defined depth of a moving luminance-defined stimulus has not been examined with fMRI. We used an fMRI adaptation paradigm to examine such selectivity. On each trial of an event-related design, two brief rotating dot patterns were presented sequentially. These had either the same or opposite directions of motion and were presented in either the same or different depth planes (+/-1 deg disparity). There were no monocular cues to depth. Attention was controlled by a demanding task at fixation; in addition, control trials in which stimulus salience was manipulated confirmed that there was no modulation by attention. In MT and MST, the compound response was smaller (adapted) when the two had the same depth than when they were different. This suggests the presence of separate neural populations sensitive to near and far motion, consistent with physiological results. Selectivity for motion direction was also seen. The magnitude of the depth effect was similar to that of direction in MT/MST, suggesting equally pronounced tuning. Visual areas V1-V4 also showed strong selectivity for near and far depth planes, whereas direction sensitivity was weaker overall and was measurable only in V3 and beyond.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical correlates of stereoscopic depth produced by temporal delay.

Stereoscopic depth processing for static objects depends on retinal disparities between the two eyes and has been shown in previous functional imaging (fMRI) work to involve widely distributed activity in the human visual cortex, including both dorsal and ventral streams. Stereoscopic depth processing of moving objects, on the other hand, can be produced by purely temporal lags between the eyes...

متن کامل

Human cortical activity correlates with stereoscopic depth perception.

Stereoscopic depth perception is based on binocular disparities. Although neurons in primary visual cortex (V1) are selective for binocular disparity, their responses do not explicitly code perceived depth. The stereoscopic pathway must therefore include additional processing beyond V1. We used functional magnetic resonance imaging (fMRI) to examine stereo processing in V1 and other areas of vi...

متن کامل

Shape recognition alters sensitivity in stereoscopic depth discrimination.

A fundamental question in visual perception is to characterize how information from sensory input is integrated with prior probabilities. The role of prior probabilities is controversial for elementary visual processes, which are often believed to be immune from higher-level influences. In this paper, we demonstrate such influences. We tested human observers' abilities to discriminate stereosco...

متن کامل

Stereoscopic illusory contours--cortical neuron responses and human perception.

In human perception, figure-ground segregation suggests that stereoscopic cues are grouped over wide areas of the visual field. For example, two abutting rectangles of equal luminance and size are seen as a uniform surface when presented at the same depth, but appear as two surfaces separated by an illusory contour and a step in depth when presented with different retinal disparities. Here, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2008